翻訳と辞書
Words near each other
・ Groupe de sécurité de la présidence de la République
・ Groupe des écoles des mines
・ Groupe des écoles nationales d’ingénieurs (Groupe ENI)
・ Groupe Doux
・ Groupe DSO
・ Groupe du Louvre
・ Groupe du musée de l'Homme
・ Groupe Dynamite
・ Groupe Feministe Socialiste
・ Groupe Flammarion
・ Group of Eleven
・ Group of Fifty
・ Group of Five
・ Group of forces in battle with the counterrevolution in the South of Russia
・ Group of GF(2)-type
Group of Lie type
・ Group of Marxist–Leninists/Red Dawn
・ Group of Monuments at Mahabalipuram
・ Group of Narodnik Socialists
・ Group of Nine (Portugal)
・ Group of Non-Partisan Citizens
・ Group of Patriotic Democrats
・ Group of pictures
・ Group of Popular Combatants
・ Group of rational points on the unit circle
・ Group of Rhodes 12264
・ Group of Seven (artists)
・ Group of Seven (G7)
・ Group of Six Artists
・ Group of sleep


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Group of Lie type : ウィキペディア英語版
Group of Lie type

In mathematics, a group of Lie type is a group closely related to the group, ''G''(''k''), of rational points of a reductive linear algebraic group, ''G'', with values in the field, ''k''. Finite groups of Lie type give the bulk of non-abelian finite simple groups. Special cases include the classical groups, the Chevalley groups, the Steinberg groups, and the Suzuki–Ree groups.
All Lie groups are groups of Lie type, but not vice-versa.
and are standard references for groups of Lie type.
==Classical groups==
(詳細はfields by . These groups were studied by L. E. Dickson and Jean Dieudonné. Emil Artin investigated the orders of such groups, with a view to classifying cases of coincidence.
A classical group is, roughly speaking, a special linear, orthogonal, symplectic, or unitary group. There are several minor variations of these, given by taking derived subgroups or central quotients, the latter yielding projective linear groups. They can be constructed over finite fields (or any other field) in much the same way that they are constructed over the real numbers. They correspond to the series A''n'', B''n'', C''n'', D''n'',2A''n'', 2D''n'' of Chevalley and Steinberg groups.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Group of Lie type」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.